

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES

SCHOOL OF NATURAL AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS, STATISTICS AND ACTUARIAL SCIENCE

QUALIFICATION: Bachelor of Science in Applied Mathematics and Statistics		
QUALIFICATION CODE: 07BAMS		LEVEL: 7
COURSE CODE: RAN701S		COURSE NAME: REAL ANALYSIS
SESSION:	JULY 2023	PAPER: THEORY
DURATION:	3 HOURS	MARKS: 100

SUPPLEMENTARY/SECOND OPPORTUNITY EXAMINATION QUESTION PAPER		
EXAMINER	DR. NA CHERE	
MODERATOR:	PROF. F MASSAMBA	

INSTRUCTIONS		
1.	Answer ALL the questions in the booklet provided.	
2.	Show clearly all the steps used in the calculations.	
. 3.	Number the answers clearly.	
4.	All written work must be done in blue or black ink and sketches	
	must be done in pencil.	

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Including this front page)

QUESTION 1 [16]

Use the definition of the limit of a sequence to establish the following limits.

1.1.
$$\lim_{n \to \infty} \left(\frac{2}{\sqrt[3]{n+1}} \right) = 0.$$
 [8]

1.2. If
$$\lim_{n \to \infty} (x_n) = 3$$
, then $\lim_{n \to \infty} \left(\frac{3x_n - 1}{4} \right) = 2$. [8]

QUESTION 2 [14]

Determine whether each of the following sequences converges or diverges.

2.1.
$$(\sqrt{n^2 + n} - n)$$
. [8]

2.2.
$$\left((-1)^n \frac{n-3}{n} \right)$$

QUESTION 3 [10]

Prove that $\lim_{n\to\infty}(x_n)=0$ if and only if $\lim_{n\to\infty}(|x_n|)=0$. Give an example to show that the convergence of $(|x_n|)$ need not imply the convergence of (x_n) .

QUESTION 4 [15]

4.1. Determine whether the series
$$\sum_{n=1}^{\infty} \frac{n^n}{n!}$$
 converges or diverges. [7]

4.2. Determine whether the series
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{3^n + 4^n}$$
 converges absolutely or conditionally. [8]

Question 5 [10]

Show that the sequence
$$(x_n) = \left(\frac{3}{\sqrt{n}}\right)$$
 is a Cauchy sequence. [10]

QUESTION 6 [9]

6.1. Define what does it mean to say a sequence
$$(x_n)$$
 in \mathbb{R} is increasing? [2]

6.2. Let
$$x_1 = 1$$
, $x_{n+1} = \sqrt{2 + x_n}$ for $n \in \mathbb{N}$. Show that (x_n) is increasing. [7]

QUESTION 7 [18]

Let $A \subseteq \mathbb{R}$ and let $f: A \to \mathbb{R}$.

- 7.1. Define what does it mean to say f is uniformly continuous on A?
- 7.2. Let $f(x) = x^2$.
 - (a) Use the definition of uniform continuity to show that f is uniformly continuous on [-4, 2].

[7]

[3]

(b) Use the nonuniform criteria to show that f is not uniformly continuous on $(-\infty, \infty)$. [8]

QUESTION 8 [8]

Apply the mean value theorem to prove that $|\ln y - \ln x| \le 4|y-x|$ for x < y and x, $y \in [\frac{1}{4}, 4]$.

ENED OF SUPPLEMENTARY/ SECOND OPPORTUNITY EXAMINATION QUESTION PAPER